
Issue #2 October 2015

zxzine

zxzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

ZXzine is published as a service
to the Sinclair ZX81 community.
Writers are invited to submit
articles for publication. Readers
are invited to submit article
ideas.

Created using Open
Source Tools:

 OpenOffice
 Scribus
 Gimp
 SZ81
 EightyOne

Copyright 2015
Timothy Swenson

Creative Commons License
 Attribution
 NonCommercial
 ShareAlike

You are free:

 To copy, distribute,
display, and perform
the work.

 To make derivitive
works.

 To redistribute the
work.

table of contents

Editorial 1

Die Roller 1

VuCalc 2

Using HRGms 3

History of MicroAce 4

My Start with the ZX81 5

Hidden Cave
A Fighting Fantasy Game 7

Page 1

Editorial

Here is the second issue of ZXzine. I'm not able to
get stats on the Google Sites page, so I don't know
how many times the last issue was downloaded. All
of the feedback that I received on the issue was
positive, so that was good.

This issue has a little bit of programming, some
history, and some of my personal experience. I am
going to try to make each issue wellrounded, with
articles that should interest all. Enough of this, so
here is the second issue.

Dice Roller

In collage I was into wargaming, both board and
miniatures. Most board wargames required 6
sided dice. The miniature rule set that I was using
required percentile or 20sided dice. I had to trek
to my local gaming store to pick those up. In a
number of gaming magazines, I remember an ad
for Dragonbone, the electronic die. It was a 6 inch
long, 1.5 inches wide, plastic "wand". It had a
slider switch for selecting the number of sides and
a button for rolling the die. There were red LED
lights with numbers next to them that signified
what the die result was. The thing was design to
be held in the hand and controlled with the thumb.
At $24.95, it was more expensive than a lot of the
wargames I was playing.

Since I never had my ZX81 out near my miniatures
table, I never really tried to create my own version
of Dragonbone, but many years later it seemed like
an interesting exercise. I wanted the Die Roller to
be as handy as the Dragonbone. No entering
numbers, but using keys to select the type of die
and the number. The up and down arrow keys (7
and 6 respectively) move the selection from the
type of die to the number of dice. The selected
item will be in inverse characters. The left and
right arrow keys (5 and 8 respectively) will
increase and decrease the selected value. If the
number of dice is 2 and the right arrow key is hit,
the number will increase to 3.

Once a selection is made on both the die and
number of die, then the 0 (zero) key is hit to roll the

dice. The outcome of each die roll is displayed.
Since a number of gaming methodologies require a
"ToHit" roll, the dice are added up and the total is
displayed. To exit the program, hit the 1 key.

The type of die are: 4, 6, 8, 10, 12, and 20
sided. The range of number of die are from 2 5.

Since I was learning how to use Z88DK with the
ZX81, I implemented the program in C, utilizing
the different libraries like input.h, and time.h. The
Z88dk documentation is not the best, but I had
found examples of the routines that I needed to use.

Page 2

VuCalc

A year after getting my ZX81, I started learning
about spreadsheets. I was working at a software
store that was branching out into hardware and the
spreadsheet was the killer application at the time. I
started off learning the classic Visicalc and then
moved onto Lotus 123 (version 1A). At my next
job, I did almost nothing but spreadsheet work.

I knew VuCalc was available for the ZX81, but I
never really tried it at out at the time as I did not
have a need for a spreadsheet. Only recently did I
decide to try it out and see how well it works.

When compared to other spreadsheets like VisiCalc,
VuCalc is very limited. The calculations
or formulas are very simple using just plus
(+), minus (), multiply (*) and divide (/).
The formulas also allow the use of
parentheses (). There are no functions, like
summation, etc. It goes have the option of
copying a formula and letting the
calculation references be relative
(changing with the copy) or static. This is
helpful when doing "whatif" calculations
to have a value go up a certain percent
each time period, like a month).

To me, the functions really make up the
spreadsheet, so I was not sure if VuCalc
was going to be useful. Interestingly, I did
find a use for it. Some years back I designed a
space combat wargame. The players are allowed to
design their own ships, based on build points.
Using VuCalc, the player can tweak with the
different values for the ship, and VuCalc keeps a
running total of the build points used. With just a
few cells to add up, it was fairly simple to create the
formula to do that. If it has been a few more cells,
it might not have worked. The end result is a useful
spreadheet.

Original Sinclair cover for VuCalc

Timex/Sinclair cover for VuCalc

Page 3

Using HRGms

Matthias Swatosch has created a HiRes package,
HRGms, for the ZX81, using a "graphics capable
RAM pack". It is a toolkit that loads above
RAMTOP and can be called via a USR call. When
I first came across the package, I thought that to use
it, I would have to type the program in on the ZX81
and not use a crossover tool like zxtext2p. Since I
had made the switch to Linux, I could not find a
native emulator that did HiRes graphics, so the
idea of HRGms was set aside.

Recently, Erik Olofsen has made changes to my
favorite emulator, sz81, to
support WRX hires
graphics. I also realized
packages like HRGms
could be used with a
crossover tool like
zxtext2p. Once the HRG
ms package is loaded
above RAMTOP, I could
load in a .P file without
the emulator doing a soft
reset.

The HRGms package
comes in two flavors, one
for 16K and one for 64K.
Each version provides a number of Hires screen
banks. The 16K version provides 5 screen banks,
but it only leaves you with about 6.5K usable for
your program. The 64K version has 4 screen banks
and leaves you with about 13K usable for Basic.

HRGms gives the BASIC and Assembly
programmer access to a number of high resolution
routines, such as plot, line, circle, box and polygon,
with a total of 30 Hires commands. There is even
a way to do User Defined Graphics. The screen
resolution is basically the same as the Spectrum or
T/S 2068, with 256x192 pixels. The package also
sets up a number of graphic screens that can be
switched between. A program listed can be listed
on the nonHRG screen, the hitting the 0 and 9
keys, the HRG screen can be switched to. The
package comes with an 18 page manual (both
English and German) that provides a lot of detail on
how the package works and how to use it.

To merge an existing BASIC program with the
HRGms package when using sz81, you load a .P
file in via the LOAD command. If you do it with
the GUI, the system will do a soft reset and all
memory is cleared. The LOAD command will find
a .P file in the last directory it looked in. So, I put
the HRGms .P file in the same directory as my .P
files and use the GUI to load it in. Then when I
want to load in the file blah.P, I just type in LOAD
"BLAH" and it will find the .P file and load it.

My first test was a simple BASIC program that
drew a line across the screen. I typed it in in a text
editor and ran it through zxtext2p to get a .P file. I

loaded in the HRG
ms package, typed
LOAD, and started
my program. There
was a thin line
drawn on the screen.
It worked and that
was easy.

For a more complete
test of HRGms, I
decided to use my
Cellular Automata
program that I have
been writing for
many different

Sinclair computers and different languages. The
program is written in BASIC without line numbers
and I use zxtext2p to convert that to a .P file. I
modified the ZX81 version to use the same screen
resolution as the Spectrum version, which was
simple to do. I then added the HRG commands to
enable HRG, clear the screen bank and plot points.

With minimal changes, my program was now
producing graphics that are amazing for the ZX81.
There has been some discussion on the ZX81 forum
on how hard HRG programming is. With the HRG
ms toolkit, converting lowres ZX81 programs is
fairly simple. The problem with higher resolution
is now the program has more to do. In the old
ZX81 resolution it went at a moderate pace, the
new resolution is very glacial. The HRGms
package gives you better graphics, but it does give
you a faster processor.

Rule 110 after running for about 20 minutes

Page 4

MicroAce

Soon after the ZX80 came out in the UK,
MicroAce, an American computer company, started
selling a clone of the ZX80. They used the same
ROM, but made minor adjustments to the hardware.
After a while, Sinclair
Research Limited
discovered what they
were doing and took
them to court. The
final resolution was
that MicroAce became
a licensee of the ZX80
and ZX81, continuing
to sell the MicroAce
only in the U.S.

MicroAce was located
at 1348 East Edinger,
Santa Ana, California.
It is unclear when the
MicroAce first became
available.

Before MicroAce went
national, Sinclair
Research Ltd.
discovered the MicroAce and sued the company for
copyright infringement. Exact details of the suit are
hard to come by, but it seems the suit was initially
thrown out as the Judge could not physically see the
similarities between the two ROMS. Eventually
Sinclair did win the case because of the similarity
of the two keyboards. Since MicroAce copied the
unique onekey entry system, the Judge could see
that it was not a coincidence that they were the
same. Another version of the story was this:

"The Microace designer copied the ROM from the
ZX80, but cunningly swapped two data bus lines
around on the PCB layout. This resulted in a hex

dump printout that was different. When Sinclair
sued Microace, complaining the ROM code was a
direct copy, Microace produced copies of the
hexdumps (hexadecimal listings of the ROM
contents) of the two ROMs. "

The results of the suit was that MicroAce licensed
both the 4K and 8K ROM from Sinclair., but they
were to be only sold in the United States. One user
on pcmuseum.ca , said that the Comp Shop in
Barnet (North London) imported the prebuilt
version of the MicroAce and sold them as
refurbished.

The first national
advertisement was
in October 1980 in
Popular
Electronics
Magazine. The top
part of the Ad did
have a statement
saying "licensed
by Sinclair
Research Ltd."
The first review of
the MicroAce was
in the April 1981
issue of BTYE
magazine.

The MicroAce
was sold in kit
form and came
with all the parts

necessary to built the computer, including cables for
connection to the TV and the cassette player. The
size of the MicroAce is 23.2 cm by 18.8 cm by 4.1
cm (9 1/2" deep, 7 3/8" wide, 1 5/8" high). The
system was on a single PCB, with the keyboard
built onto the PCB. The keyboard was similar to
the ZX80, whereas the ZX80 keyboard was two
layers of plastic, the MicroAce as a single layer of
plastic over the PCB and when a key was
depressed, it made contact with metal on the PCB.
The case for the MicroAce was similar to the ZX80
case in that it used plastic pop rivets to hold the
case together. The display of the MicroAce was
white letters on a black background. An early
reviewer found that the black was more grey, but

MicroAce kit package with manual and power supply

Page 5

with adjustments of the contrast and brightness, the
grey could be made to look more like black.

The MicroAce was cheaper than the ZX80. The
base kit was $149.00 for 1K. The 2K kit was
$169.00. The manual was $10. For those who had
purchased the 1K kit and wanted to upgrade to 2K,
the cost was $29.00 . The ZX81 was selling for
$199.95.

The manual contained both the construction details

and the BASIC user guide. A reviewer described
the contraction part of the manual as very basic and
relied on the customer as having experience with
soldering and electronic builds. For those that had
problems building the kit, MicroAce stated in their
ads that "if you are unsuccessful in constructing our
kit, we will repair it for a fee of $20.000, post and
packing."

The BASIC part of the manual was described more
as a BASIC reference guide than a tutorial for
learning BASIC. The manual was short on
examples of how to use the different commands.

In BYTE magazine, January 1983, review of the
Timex/Sinclair 1000, the author mentioned this
about the MicroAce.

The Microace company sells a modification for the
ZX80 that allows a ZX80 owner to have the
equivalent of a T/S 1000. Unfortunately, although
the additional logic board is small and contains only
seven ICs, the board won't fit inside the ZX80's
case. But if you really want the continuous display,
the upgrade is only $29.95 from Microace (see table
1). It works fairly well, but the board is not made by
Sinclair, and I had problems with it. Microace was
prompt in responding to my request for help, but its
response was that I must have assembled something
wrong or that something wasn't working properly.
The latter turned out to be the case. After I replaced
a 74LS00 chip, the modification board worked fine.

The MicroAce was mentioned in one scientific
periodical, Behavior Research Methods &
Instrumentation. In Volume 13, Issue 5, Jerry
O'Dell, of Eastern Michigan University, submitted
an articled entitled "The MicroAce: An inexpensive
computer controller."

It is unclear when MicroAce finished trading. The
1983 article from BYTE puts them into early 1983.

My Start with the ZX81

At the end of my Junior year of high school (spring
1981), I was taking an interest in computers. A
number of home computers were out. I knew a few
people that had them. On friend had an Apple II and
other had a TRS80 Model I. My friend and I were
both thinking about getting one.

The day we took our SAT test, we walked from the
test site to the local computer stores in downtown
Hayward, California. Our first stop was the Byte
Shop. We walked in and asked them what was their
cheapest computer. They said "an Apple II at
$1,300". After the shock wore off, we politely
excused ourselves. Just a couple blocks way was
Computerland. We walked in there and the
cheapest computer was the Vic20 for $300, plus
$100 for the cassette unit. That was more in my
price range. By the time my friend and I left, we
were almost sold on the Vic20.

Page 6

A number of months later, I was reading the
October issue of Popular Science when I saw an
article on this tiny little computer from England. It
was only $150 and had this
neat little printer to go with
it. I thought it was
intriguing, but did not
think much about it,
because it was not
available in the US.

The next issue of Popular
Science had a two page for
the ZX81. The bright
yellow background made
the ad stand out. For $250,
I could get a computer with
16K of memory. It had no
sound, no colors and only
64x44 graphics, but it had
16K. I thought memory was more vital than color
and sound. My friend bought a TRS80 Color
Computer with color, sound, and 16K for $600.
Not having a checking account, I gave my Mother
the $250 and she wrote a check for the computer.

The ZX81 arrived the day
before Thanksgiving. I had
a number of free days to set
it up and experiment with it.
The first thing my Step
father said when he saw the
small size of the ZX81 was
"You spent $250 on that?"
Before I could get too far
along, I needed a cassette
player. A quick trip to the
local mall took care of that.

When I first started with the
ZX81, I was using the spare
TV in the family room. I set
the ZX81 on the floor, laid myself on the floor and
started typing in short programs. After 10 minutes,
the ZX81 would crash. It did it over and over
again. Then I realized that the slots in the bottom
of the ZX81 were for cooling and that conflicted
with the shag carpet I was sitting it on. Once I used
a better surface, all was well.

My first experiments with saving programs was
horrible. I could save to tape, but I could never
load. I could hear the noise on the tape, see the

screen get all messy,
but nothing ever
loaded. I discovered
that with this tape
player, you had to push
both Play and Record
at the same time. The
tape player in my
stereo only need the
Record button to be
pushed. Suddenly, I
could load from tape.
I figured out that I had
to run the volume all
the way up until the
ZX81 load screen was
all black (from too

much noise) and then decrease it slightly until I
could see some solid horizontal bars. Once I had
the volume set, I never had any problems loading.

Like other ZX81 users, I had the problem with the
16K memory pack wobble. The reason for the

wobble was that link
between the ZX81 and the
memory pack was very
tight. You could not
move the ZX81 because
the memory pack would
shift on the external
connector, losing
connectivity. I figured if
both the ZX81 and
memory pack were
attached to something
stable, I could move them
both together. I found
some scrap peg board in
the garage and cut it to be

about the size of the ZX81 and memory pack. I
then duct taped the ZX81 to the board, attached the
memory pack and duct taped that to the board.
Now when I moved the board, the ZX81 and
memory pack stayed together. It was a 5 cent
solution to my problem. I remember seeing all
those ads that solved the rampack wobble, some for
as much as $25. I wondered why people spend

Only print out that I have from an MTD Software
game

Page 7

money on those items when a simple solution was
available.

I remember somehow picking up a copy of the
November/December 1981 issue of SYNC and
spending hours going over each page of the
magazine. Some of the first programs that I typed
in (outside of the ZX81 manual)were from that
magazine. I thought it was rather odd to see ads for
UK based companies. In those days not many
people had credit cards and the ads said that
payment must be made in Sterling by International
Money Order, which most Americans really had not
heard of. Needless to say, I did not purchase any
software until it started showing up in stores when
the T/S 1000 came out.

After high school, I really started working on ZX81
programs, writing a number of games based on
programs listed in "BASIC Computer Games" and
"More BASIC Computer Games" by David Ahl.
After having a number of games written and tested,
I thought I should start a software company.

I filed the paperwork for a business license, got a
home business permit, and purchased a two tape
cassette deck that I could use for making copies. I
called the company "MTD Software" named after
myself and two friends; Mike, Tim & Doug. I tried
advertising in a local free classified newspaper and
had no luck. I attended a small computer show at a
local high school and sold two tapes. That was the
whole entirety of the sales for MTD Software.
College and work took over the majority of my
time.

Hidden Cave
 A Fighting Fantasy Game

Back in the 1980's, I spent some of my free time
playing wargames and board games. I looked into
solo gaming because I wanted to be able to game
when I wanted and not have to schedule time with a
friend. At some gaming store I found some
Warlock magazines. These were magazines for the
Fighting Fantasy game books that were very
popular in the UK, but did not make it over to this
side of the pond.

The Fighting Fantasy rule system was very small,
since most of the control of the game was done by
the books. It was also similar to a number of other
role playing systems like Tunnels & Trolls and The
Fantasy Trip. I never did get around to playing the
short adventures in the magazines, but I kept them
with my other gaming stuff.

Recently I was looking for ideas for ZX81
programming and I remembered the Warlock
magazines and the Fighting Fantasy system. I'm
not much into adventure games, either writing or
playing, but I thought it would be interesting to
code a short example of such a game.

What came out of this is Hidden Cave, a short
dungeon crawl adventure that uses the Fighting
Fantasy combat system. I wrote the code such that
it would be fairly easy to expand the game for other
adventures.

At the beginning of a game, the player generates a
character that has a number of Stats or
characteristics like skill, stamina, and luck. These
status are used for combat against monsters or "bad
guys" or with traps, like arrows that shoot from
holes in the wall (ala Indiana Jones).

The general style of a Fighting Fantasy game is one
of reading a numbered paragraph and then taking
some action at the end of the paragraph. The
decision is usually something like "Turn left" or
"Go through the right tunnel", or something like
that. A certain points the player will encounter
either monsters or traps. With monsters, the combat
system comes into play. Players can be hurt or
killed when fighting a monster. Traps do not
require combat and only require a roll against luck.

Like all adventure games, players go through
locations. In a dungeon it would be a room, or in a
cave it would be a different section of the cave.
The concept of rooms is used in this game.

Playing the Game

Playing the game if fairly simple and there are
limited instructions in the game. Most of the
Fighting Fantasy rules are coded into the game so
the player does not have to worry about them, but
only worry about the outcome. Hidden Cave is not

Page 8

a long adventure not a very exciting one, but it is a
simple example to demonstrate the core part of the
game.

Programming the Game

The hoped use for Hidden Cave is for others to use
the "engine" to create longer adventure games.
There are a number of subroutines that form the
game "engine":

chargen Subroutine for character generation.
This subroutine randomly generates a character
based on the FF rules. The player has the option of
keeping the character or they can have the system
randomly generate another one. Once the player
accepts, the character stats is used throughout the
game.

combat Subroutine for monster combat. This
subroutine takes the players stats and run combat
against the stats of the monster. Combat has three
outcomes, player kills monster, monster kills player,
or player flees combat.

trap Subroutine for handling traps. This
subroutine handles traps that are put in the game to
challenge the player. A random number between 1
and 6 (a roll of a die) is generated and compared
with the players luck. If it is lower than luck, then
the player is fine, else the player looses stamina.

roomX Subroutine for each room. The core part
of the game in the room. Each room has a
description, one or more exists (unless it is an end
room) and possibly a monster or trap. If there is a
monster or trap, certain variables are set and either
the combat or trap subroutine is called. At the end
of each room is a list of where to go next and code
for deciding where to go.

The hardest part of the game is creating a map of
the locations of the rooms and how they are
intertwined with each other (in mathematical terms,
the layout of the rooms would be considered a tree
graph). The text description of the rooms is the
heart of the story of the adventure and takes a lot of
work. Each room is a subroutine called roomX,
where X is a number from 1 to X. The game should
start in Room1 and move from there.

I hope the code for the game is fairly easy to read.
The utility, zxtext2p, is needed to convert the code
into a .P file for a ZX81 emulator.

